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Abstract. In this work it will be shown how quark confinement appears when wave equations derived in
curved spaces are considered. First, the equations and their solutions for Coulomb-like potentials will be
presented, and then, how this theory leads to quark confinement. A comparison between different models
of confinement will also be made.

1 Introduction

The introduction of quarks in the physical theory in 1964,
by the Gell-Mann [1] and Zweig [2] hypothesis, has also
introduced the annoying question of quark confinement.
If on the one hand this theory was able to organize and
to explain the main proprieties of the hadrons with the
scheme called the eightfold way [3], on the other hand, the
impossibility of observing free quarks could be considered
as a major problem. Since then, many authors proposed
models in order to describe the structure of the hadrons in
terms of confined quarks. A successful way to implement
these ideas is to consider non-relativistic constituent quark
models, such as the non-relativistic oscillator model, pro-
posed by Dalitz in 1967 [4] and by Faiman in 1968 [5], where
the baryons are supposed to be systems composed of three
constituent quarks, confined by an harmonic oscillator po-
tential, with the states determined by the Hamiltonian

H0 =
∑

i

p2
i

2mi
+
K

2

∑
i>j

(ri − rj)
2
. (1)

This model was improved by De Rújula [6] with the addi-
tion of a quark–quark spin-dependent potential, by Karl
and Isgur, with the introduction of a quantum chromo-
dynamics inspired potential [7] and also by Murthy [8],
who considered a deformed oscillator. Heavy qq̄ systems
are equally well described by non-relativistic constituent
quark models, such as the Cornell model [9,10], that uses
a linear plus Coulomb potential of the type

V (r) =
a

r
+ br, (2)

where a and b are constants determined phenomenologi-
cally. Some models, as for example [11, 12], are based on
other mechanisms, and generate different potentials.

Despite the success of the non-relativistic models in
describing the hadrons proprieties, theoretically, it is more
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reasonable to think of quarks as relativistic particles. In
1968, Bogolioubov [13] considered the baryons as spherical
cavities, and inside of them the three constituent quarks
are Dirac particles, that generate a self-consistent mean
field that was represented by a scalar potential

V (r) = 0 for r ≤ R,

V (r) = V0 for r > R, (3)

and quark confinement is achieved for V0 → ∞. Further
development of these ideas led to the MIT bag model [14]
where the vacuum pressure was included. Other models
based on the Dirac equation [15–17], with rn confining
potentials, as in [17]

V (r) = V0 + λr, (4)

may be found in the literature, and they also show good
agreement with the experimental data.

In a recent paper [18], a relativistic wave equation based
on the general relativity formulation has been derived. This
theory has been constructed taking into account the ef-
fect of different kind of interactions (electromagnetic and
strong) in the metric of the space-time. In this work, the
main objective is to investigate the quark confinement with
this theory. As it will be seen in the next sections, very
interesting results can be obtained this way, and in many
aspects these results are qualitatively different from the
ones obtained in the previously cited models.

This paper has the following structure: In Sect. 2 a brief
review of the theory and the solution of the equation for
a Coulomb-like potential are shown, in Sect. 3, the quark
confinement effect that comes from this theory is presented,
and in Sect. 4, a comparison between the different confine-
ment mechanisms discussed in this paper is made and the
conclusions are drawn.

2 Quantum mechanics in curved space-time

The Einstein general theory of relativity is one great
achievement in the understanding of Nature, and when
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applied to very large systems, such as planets or galaxies,
gives very precise results. Taking this fact into account, fun-
damental questions may be asked, as for example why the
general covariance principle does not apply to very small
systems, such as atoms or elementary particles, and if the
laws of physics depend on the size of the object. In quan-
tum systems, the electromagnetic and strong interactions
dominate and the gravitational interaction is negligible, as
the masses of the considered particles are very small. So,
the gravitational potential may be turned off, and then,
the curvature of the space-time will be predominantly due
to the other interactions (electromagnetic and strong).

With these aspects in mind, in [18] a theory was pro-
posed, and an equation similar to the Dirac equation was
derived. In this section, a brief revision of this theory, will
be made, and some results, necessary to the development
of this paper will be shown.

The simplest way to formulate this theory is to consider
systems where spherical symmetry exists. In this case, the
space-time is described by the Schwarzschild metric [19,20],

ds2 = ξdτ2 − r2(dθ2 + sin2 θdφ2) − ξ−1dr2, (5)

where the factor ξ(r) = (1 + V (r)/m0c
2)2 is determined

by the interaction potential V (r) and is a function only
of r.

From the definition of the energy-momentum relations
and the respective quantum operators (mathematical de-
tails may be found in [18]) in the given metric, the general
relativistic equation for spin-1/2 particles

i�
ξ

∂

∂t
Ψ =

(−i�c α.∇ + βm0c
2)Ψ (6)

has been deduced [18], where Ψ is a four-component spinor.
One must note that despite the fact that this theory is
conceptually more complicated than the Dirac one, the
final equation is very similar to the Dirac equation, which
is surprisingly in accord with his simplicity ideal.

The spatial part of Ψ may be written as

ψ =


 F (r)χµ

k

iG(r)χµ
−k


 , (7)

where χµ
k are the usual two-component spinors, and k is

related with the angular momentum by

k = l for j = l − 1/2,

k = −l − 1 for j = l + 1/2. (8)

The radial part of (6) may be rewritten as a pair of coupled
equations for the and the F and G functions

√
ξ
dF
dr

+ (1 + k)
F

r
=

(
E√
ξ

+m0

)
G,

√
ξ
dG
dr

+ (1 − k)
G

r
= −

(
E√
ξ

−m0

)
F. (9)

Considering a coulomb-like potential V (r) = −αZ/r
the ξ function becomes

ξ =
(

1 − αZ

m0c2 r

)2

, (10)

and inserting (10) in (9) and making the substitution ρ =
βr, the equations may be put in the form

ξ
dF
dρ

+
√
ξ(1 + k)

F

ρ
=

(
E

β
+

√
ξ
m0

β

)
G,

ξ
dG
dρ

+
√
ξ(1 − k)

G

ρ
= −

(
E

β
−

√
ξ
m0

β

)
F. (11)

The equations may be solved by the Frobenius method,
expressing theF andG functions as power series of the form

F = ρs
N∑

n=0

anρ
ne−ρ,

G = ρs
N∑

n=0

bnρ
ne−ρ. (12)

Substituting this expressions in the equations we find that
s = 0 and the relations between the coefficients are ob-
tained:

a1 =
[

1 + k + αβ

αβ

]
a0

b1 =
[

1 − k + αβ

αβ

]
b0, (13)

2α2β2a2 −αβ (3 + k + αβ) a1

+ (1 + k + 2αβ) a0 + αm0b0 = 0,

2α2β2b2 −αβ (3 − k + αβ) a1 (14)

+ (1 − k + 2αβ) b0 + αm0a0 = 0,

and

(n+ 3)α2β2an+3 − αβ [2n+ 5 + k + αβ] an+2

+ [n+ 2 + k + 2αβ] an+1 − an + αm0bn+1

− (E +m0)
β

bn = 0,

(n+ 3)α2β2bn+3 − αβ [2n+ 5 − k + αβ] bn+2

+ [n+ 2 − k + 2αβ] bn+1 − bn + αm0an+1

+
(E −m0)

β
an = 0, (15)

with a0, a1, a2, b0, b1, b2 �= 0. From these relations, one
obtains β =

√
m2 − E2, which determines the factor

e−
√

m2−E2
N r in the wave functions (12) – this leads to the

same behavior as that obtained with the Dirac equation.
The relation

[N + 2αβ]β − αm2 = 0 (16)
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is also obtained from (13)–(15) and gives the relation for
the energy levels

EN = ±mec
2

√
1
2

− N2

8α2 ± N

4α

√
N2

4α2 + 2, (17)

where the physical values are the positive ones. This spec-
trum may be compared with the one obtained with the
Dirac equation [22,23] (also deduced by Sommerfeld [25])

EN =
mec

2√
1 + α2/a2

, (18)

where a = N − j + 1/2 +
√

(j + 1/2)2 − α2, if one
takes numerical results. For example, for the electron–
proton interactions in the deuterium atom, the results may
be obtained considering the fine-structure constant [26]
α = 1/137.03599976, Z = 1 and the electron mass m0 =
0.510998902 MeV/c2 [26]. The experimental ground state
energy for the deuterium atom is E1 = −13.60214 eV1;
calculating it with the Dirac spectrum (18), one has
−13.60587 eV, and with (17), −13.60298 eV. More numer-
ical results may be found in [18]. Observing these results,
one can see that the accord of both theories with the deu-
terium experimental data is very good, but the results from
(17) are closer to the experimental data than the results
from (18). The results form the Dirac theory (18); one can
see that the deviations from the data are of the order of
0.027%. Considering the spectrum of (17), the deviations
are of the order of 0.005%, almost five times smaller, which
is a significant improvement. The same pattern occurs when
the other energy levels are compared [18].

3 Quark confinement

At this point, it is possible to use the theory proposed
in [18] and briefly exposed in the latter section in order to
study the hadronic structure. If one considers the hadronic
structure in a way similar to the Bogolioubov [13] and MIT
bag [14] models, supposing that the hadrons are composed
of constituent quarks, which generate a self-consistent color
field, and that this field may be described by a spherical
potential, (9) may be used. In this section, some results
and the implications of these ideas in studying quark con-
finement will be discussed.

In a baryon, for example, that is a qqq system, the wave
functions and energies of the individual constituent quarks
are determined by (9). So, the mass of the hadron is the
sum of the individual energiesEi,n of the i quark at state n:

M =
3∑

i=1

Ei,n. (19)

In a nucleon, the three quarks are supposed to be in the
ground state E1. If we also suppose that mu = md = m,

1 The experimental values for the energy levels of the hydro-
gen and deuterium may be found in [24].

the nucleon mass will be MN = 3E1. In this framework,
excited states of the quarks produce hadrons in higher
energy states and resonances.

Now, as an example, let us consider, for simplicity, that
the field generated by the quarks has a shape similar to a
strong Coulomb potential (for strong interactions, a strong
Coulomb potential, with α ∼ 1, may be considered). In this
case, inside the classical horizon of events, for r < r0, the
quark wave functions are given by (12) with energies (17).
But near the horizon of events, at r = r0 these solutions
are not valid, and for this reason, this case must be studied
separately. The solution of the equation in the neighbor-
hood of r0, may be given by an expression similar to (12),
but replacing ρ for ρ− αβ/m0,

F = ρs
N∑

n=0

an

(
ρ− αβ

m0

)n

e−ρ,

G = ρs
N∑

n=0

bn

(
ρ− αβ

m0

)n

e−ρ. (20)

With this procedure, one finds that near the horizon of
events, just one energy value is possible, E = 0. The other
conditions for the existence of a solution are k = 0 (l = 0)
and s = −1 − α, which means an infinite discontinuity
of the wave function (20) at r = r0. If this solution is
discarded, the trivial solution ψ(r0) = 0 must be consid-
ered, which can be interpreted as a boundary condition at
r = r0. Consequently, this solution tells us that the space is
divided in two parts (a fact that is true in both cases) inside
and outside the horizon, which does not communicate. So,
at r ∼ r0, the solution (20), imposes the confinement of
quarks inside this region. Classically thinking, the quarks
are confined by a trapping surface [28] that is generated
by the potential.

Considering the Υ meson family, that is composed by
bb̄ states, the theory may be applied just considering b con-
stituent quarks with massesmb = 5.5 GeV, and a Coulomb
potential with α = 1.05, which is a reasonable value for
quark interactions. From the expression (17) one has

Mi,j = mb

∑
n=i,j

√
1
2

− n2

8α2 +
n

4α

√
n2

4α2 + 2, (21)

and consequently, mΥ = M1,1 = 9.47 GeV (the experi-
mental value is mΥ = 9.46 GeV [26]). Excited states of the
quarks determine the other Υ states, up to the limit value
mmax = 2mb = 11.0 GeV; this is the mass of the last Υ
state found in [26], the Υ (11020). The first excited state is
M1,2 = 9.83 GeV, which shows a small discrepancy of the
experimental value (less than 2%), that is 10.02 GeV. The
second state is M2,2 = 10.19 GeV, which is still close to
the experimental value, 10.35 GeV [26]. The quarks will be
confined inside the region r < r0 = 0.05 fm, which is a rea-
sonable size for the core of a meson. Some estimates of these
quantities for other hadrons may be found in Table 1 [18].

One must remark that in order to describe the spectra
of the particles of Table 1 more accurately, specially in the
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Table 1. Values of the masses M of the hadrons, composed of
constituent quarks of mass m compared with the experimental
ones [26]. The calculations are made with (17), obtained for
Coulomb potentials with coupling α

m (GeV) α r0 (fm) M (GeV) Mexp (GeV)

N(qqq) 0.38 1.60 0.83 0.938 0.938 (proton)

J/ψ(cc̄) 1.79 1.00 0.11 3.10 3.10

Υ (bb̄) 5.50 1.05 0.05 9.47 9.46

excited states, other terms must be added in the potential,
or even a better shape for the potential, based on the QCD,
must be considered. This fact (that is widely used [6–12])
may be understood if one observes that for short-range
interactions many effects may occur, generating corrections
to the potential. Another factor that must be considered to
improve the description is that spherical symmetry is not
the best one for qq̄ mesons, and this fact must be corrected
in future works.

In this description, the horizon of events is not an ex-
clusive feature of the Coulomb potential; it may appear for
any attractive potential, when the condition

ξ(r0) = 0, (22)

is satisfied, which occurs for V (r0) = −mc2. In these cases,
the only energy value isE = 0, and the solution will present
the discontinuity shown above,

ψ ∝ f(r)

(r − r0)
δ

(23)

with δ > 0, results that lead to quark confinement for
general attractive potentials. So, as we can see, with this
description, quark confinement is a phenomenon that hap-
pens in a natural way for many kinds of potentials.

An interesting question that may be asked is how a
particle, as for example an electron, can probe the internal
structure of the hadron entering and leaving the black hole.
To answer this apparently paradoxical question, one must
observe that this black hole is generated by the strong
(color) interactions, and the leptons are not affected by
strong forces. So, the black hole does not exist for this
kind of particles, and the leptons may probe the internal
structure of the hadrons if their energy is high enough. This
is a good reason to use leptons to investigate the interior
of the hadrons. The radiative decays of hadrons h → h′γ
may be understood in a similar way. Inside the hadron h
an excited quark q∗ may decay by the process q∗ → qγ and
the produced γ may be observed, as it is not affected by
the black hole.

Hadronic decays of the type h → h′ + hadrons may
occur when the excited quarks are in states where the wave
functions are not small near r0. In these cases, when the
quarks are near the black hole surface at r ∼ r0, they may
excite the vacuum, creating a qq̄ pair and decaying in a state
where ψ(r ∼ r0) is smaller. A similar situation is expected
classically; Hawking in [27] proposed that particles may
be created thermally near black holes. The probability of

creating particles is related to the part of the wave function
that would leave the black hole [27], so, smaller values of
ψ(r ∼ r0) means a smaller probability of creating a qq̄ pair,
and consequently of decay of the hadron. So, as we can see,
in the quantum world, black holes are not so black, and
there are many processes where the particles may reach
the external world.

4 Discussion of the results

In this work it was shown how quark confinement appears
when relativistic wave equations in curved spaces are used.
Now the obtained results will be compared with the results
of the existing models.

As it was said in the introduction, many authors
succeeded in explaining quark confinement with phe-
nomenological potentials. In the non-relativistic oscilla-
tor model [5–7], the Hamiltonian (1) leads to confin-
ing oscillator-type wave functions that contain a factor
e−β(r2

1+r2
2+r2

3), where β is a constant. In [17] with the po-
tential (4), the approximate behavior of the wave function
is ψ ∝ Φ(r)e−βr2

and in the Cornell model [9], where the
potential of the type (2) is used, a similar behavior occurs.
In the Bogolioubov and in the MIT bag models that con-
sider a potential of the type (3), the wave functions contain
a factor e−β

√
m2−E2(r−r0), and quark confinement appears

in the limit V0 → ∞, where the wave function is constant
for r = R and 0 for r > R.

As itwas seen in the previous section, quark confinement
appears in a different way when the equations derived in
curved spaces are used. Differently from the other models,
for an internal particle it is not possible to reach the surface
r = r0, as ψ(r0) = 0. One must observe that even in the
MIT bag model, with an infinite potential, so strong a
condition is not reached. The result of this condition is that
the space-time is divided in two disconnected regions, inside
and outside the surface. This fact is an intrinsic property of
the space-time, due to attractive potentials, as for example
the Coulomb potential, and there is no need of introducing
confining potentials to obtain this effect. In fact, potentials
of the type (1)–(4) represent in an approximate way, in
plane space-time formulations, systems that are described
in a natural way by curved spaces.

Another interesting aspect of the theory is that clas-
sically it is expected that a collapse occurs at the origin,
but here we are dealing with quantum systems, and the
uncertainty principle forbids this collapse. The solution of
the equation shows that the wave function is 0 at the origin,
confirming this statement.

The Dirac theory [29,30] introduced the special relativ-
ity in quantum mechanics, so it is very reasonable to think
that the next step is to formulate the quantum mechan-
ics in terms of the general relativity ideas. The deuterium
spectrum obtained in this way shows that the corrections
of the energy levels, due to this general formulation of
quantum mechanics (or general quantum mechanics) with
the inclusion of the electric curvature of the space-time,
provide a quite impressive agreement with the experimen-
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tal data. The same agreement is expected to happen in
hadron spectroscopy with the introduction of the correct
shape of the potential. Another piece of strong evidence
in the validation of the theory is the quark confinement
mechanism proposed in this paper, where the quarks are
confined by a trapping surface, similar to the one defined
by Penrose [28]. Conceptually, these are very important
results, as they show a successful way to join quantum
mechanics and general relativity.
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